
InJoinTM Meta-DirectoryTM
Connecting Proprietary Data
Servers using the JoinEngine

Perl Plug-In Guide

InJoinTM Meta-DirectoryTM Connecting Preprietary Data Servers using the JoinEngine Perl Plug-in
Guide
January 2001

Copyright © 1995-2001 Critical Path, Inc. All rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without
prior written permission from Critical Path. Printed in Ireland. The information furnished herein is
believed to be accurate and reliable. However, no responsibility is assumed by Critical Path for its use,
nor for any infringements of patents or other rights of third parties resulting from its use. Critical Path
and the Critical Path logo are trademarks of Critical Path, Inc.

Includes technology and information from the University of Michigan at Ann Arbor. Copyright ©
1992-1996 Regents of the University of Michigan. All rights reserved.

Acrobat® Reader Copyright © 1987-2001 Adobe Systems Incorporated. All Rights reserved. Adobe
and Acrobat are trademarks of Adobe Systems Incorporated, which may be registered in certain
jurisdictions.

This product includes software that is copyright (c) 2001 by Sleepycat Software, Inc. All rights
reserved.

Portions copyright 1991-2001 Compuware Corporation.

Microsoft and Windows NT are registered trademarks and Internet Explorer is a trademark of
Microsoft Corporation.

ActiveState, ActivePerl, and PerlScript are trademarks of ActiveState Tool Corp. Commerical Support
for ActivePerl is available through the PerlClinic at http://www.PerlClinic.com. Peer support resources
for ActivePerl issues can be found at the ActiveState Web site under support at
http://www.activestate.com/support/.

All other trademarks and registered trademarks are the property of their respective holders.

Critical Path
USA

185 Berry Street (Suite 4700)
San Francisco, CA 94107, USA
Telephone : +(415) -659 3524
Fax: +(415) -659 0006
technical.support@cp.net

Critical Path
Ireland

42 - 47, Lower Mount Street,
Dublin 2, Ireland.
Telephone: +353 (1) 241 5001
Fax: +353 (1) 241 5170
technical.support@cp.net

Critical Path
Website

http://www.cp.net/

Contents

iv

 1 Overview 6
Working with proprietary Data Servers 6
Architectural Overview of the JoinEngine Perl Plug-In 7
Operational Overview of JoinEngine 9

Data Entries 9
State Databases 11
JoinEngine Multi-threading 13

 2 Interfacing with Proprietary Data Servers 14
Interfacing with proprietary Data Servers 14

Project and Deployment requirements 14
Data Propagation 15
Interface APIs (C/C++, file) 17
LDAP Schema Considerations 17
Data Translation and Information Inference 17
Proprietary Data Server Entry Indexing 18

 3 Data Record Definition 20
Data Record Definition 20

Important Notes 22
Sample Data Record 23
Multi-Valued Attributes 23
Overriding the JoinEngine default object-class 24
Specifying binary attribute values 25

 4 Perl Script Function Interface 28
Overview of the Perl script function interface 28
Package Constructor and Destructor 30
Script Initialization Routines 30
CV to MV synchronization routines 32
MV to CV synchronization routines 35

 5 Some Design Considerations 38
Logging 38
Scheduling 38
Renaming entry index values 38
Renaming entry LDAP DN values 39

Contents

v

 6 Miscellaneous Issues 40
Further Information on Perl 40
ActiveState Tool Corporation’s ActivePerl and InJoin Meta-Directory 41
LDAP Schema Extensions 42
Checklist 42

Operations for the Proprietary Data Servers 44
Interacting with the Perl script 44
SAP and PeopleSoft Integration 45

SAP 45
PeopleSoft 49

Chapter 1
Overview

This chapter provides information on using the InJoin Meta-Directory to synchro-
nize data between a proprietary Data Server and an LDAP compliant directory. A
good understanding of the contents of this document should greatly assist those
intending to write JoinEngine Plug-In Perl scripts.

To understand this manual, it is assumed that you have:

■ Experience writing Perl scripts

■ Experience using InJoin Meta-Directory

■ Received training on InJoin Meta-Directory Release 3.x

■ Full knowledge and understanding of the architecture of the deployed
meta-directory

Working with proprietary Data Servers
There is a wide variety of sources of information that can be included in a meta-
directory. The possible data servers may be:

■ Text file (many proprietary data servers offer text file import/export utilities)

■ Database

■ Remote server (accessible over ftp, telnet, and so on)

■ Mail system directory (for example, cc:Mail)

■ Operating system user registry (for example, NT domain controller or UNIX
/etc/password file)

Architectural Overview of the JoinEngine Perl Plug-In

7

Architectural Overview of the JoinEngine Perl
Plug-In

The JoinEngine server interfaces with a variety of different Data Server types using
both standard and proprietary API and protocols. The LDAP protocol is used to
communicate with directories such as InJoin Directory Server, Active Directory, and
iPlanet/Netscape Directory Server. A combination of Open Database Connectivity
(ODBC) and native DB access is used to communicate with databases such as
Oracle. The Notes API is used to communicate with Notes Servers. In addition, a
Perl API may be used to connect other Data Servers to the JoinEngine. The
JoinEngine interfaces to a Perl script through a defined API. The Perl script inter-
faces with a Data Server using suitable interface techniques.

LDAP

LDAP

 Plug-In

Database

 Plug-In

SQL

Notes

Plug-In

Universal

InJoin Meta-Directory JoinEngine

PERLNotes API

LDAP
Oracle/
ODBC/
.......

Notes Proprietary

Data Server

 JoinEngine JoinEngine JoinEngine
Plug-In

JoinEngine

Chapter 1 Overview

8

Perl is quite extensive and Perl modules exist for enabling communications with
many Data Server types. Many of these modules are supplied with the binary distri-
bution of Perl. Other modules may be downloaded from various Web sites. the
diagram above illustrates some sample uses.

Perl File

InScribe

InJoin Meta-Directory JoinEngine

NT Primary

Server

Perl NT
Package

JoinEngine Perl Plug-In

Perl

Text
File Domain

Controller

Perl Telnet Other ...

Other ...

Interface Package

Messaging

Operational Overview of JoinEngine

9

Operational Overview of JoinEngine

The diagram above provides a high-level overview of how the JoinEngine interfaces
proprietary directories with LDAP compatible directories. A State Database is moni-
tored by the JoinEngine to maintain information regarding the managed data.

Data Entries

Data entries generally have a number of attribute-value pairs. For example, some
sample attributes from an NT user record are as follows:

objectclass=[L]top,person,organizationalPerson,ntuser
ntuserdomainid=JohnS
ntuserhomeDir=x:\users\johns
ntusercomment=localization engineer
description=Meta-Directory localization engineer
ntuserbadpwcount=2
ntusernumlogons=45
ntuserlogonserver=PHOENIX
ntusercountrycode=121
ntuseruniqueid=johns

L
D
A
P

P
E
R
L

JoinEngine

State
DB

LDAPProprietary
Directory

Chapter 1 Overview

10

ntuserprimarygroupid=localeng

An important requirement on all data entries is that they can be uniquely and
consistently identified, either by a single attribute or by a combination of a number
of the entry’s attributes. The entry’s distinguished name (or GUID in the case of
Microsoft’s Active Directory) uniquely identifies each data entry in an LDAP direc-
tory. Unique names are important because the JoinEngine needs to correlate entries
between synchronization cycles. Consistent index naming is required because the
JoinEngine will expect the script to consult entries in proprietary data servers given
the entry index value.

Data Entry Ownership

The JoinEngine is responsible for replicating and linking data entries between
proprietary data servers and LDAP directories. For example, if an administrator adds
a new data entry to a proprietary Data Server, the JoinEngine will replicate the entry
to the LDAP directory creating a new equivalent LDAP directory data entry. For
deleting entries, there are a number of possible scenarios?

■ If the LDAP directory data entry is deleted, should the delete be propagated
down to the proprietary directory, and the entry removed from the proprietary
Data Server? Should the delete be flagged as an invalid operation and should the
entry be re-added to the LDAP directory?

■ What should happen if the original proprietary Data Server entry is deleted?
Should the delete operation be honored or should an attempt be made to re-add
the entry to the proprietary Data Server.

The answer is that both options are perfectly valid and the actual behavior depends
on the administrator requirements. The behavior is managed on a per-entry basis by
the JoinEngine as it maintains an entry ownership flag, and the ownership is
assigned to either the LDAP directory or the proprietary Data Server. Ownership
primarily bestows delete privileges. Ownership may also be used to control Attribute
Flows. Only the owner may delete an entry. If the owner entry is deleted, the delete
will be propagated to the adjacent system, either the LDAP directory or the
connected directory. If a non-owner entry is deleted, the JoinEngine will attempt to
re-add the deleted entry.

Operational Overview of JoinEngine

11

State Databases

The JoinEngine Perl Accessible Server State database serves a number of specific
purposes. Every replicated data entry, whether it originated in the proprietary Data
Server or the LDAP directory, is maintained in the State database. Each data entry
has a single record in the State Database. Each State database entry in turn has a
number of fields. The JoinEngine may be configured to maintain a State database
for each connected proprietary Data Server. The following sections describe the
structure and purpose of the State database.

State Record Contents

Either the [Proprietary Index] field or the [LDAP DN] field indexes each record.
The following fields comprise each State database record:

[Proprietary Index]
The proprietary index uniquely identifies a data entry in the proprietary Data Server.
Each proprietary data entry must be uniquely and consistently identifiable by an
index value – the index is typically an attribute value (for example, UserID) or a
Database record count.

[LDAP DN]
The LDAP DN is the distinguished name of the equivalent entry in the LDAP
directory. It should be noted that in the case of Microsoft Active Directory, the entry
GUID rather than the DN is used as the LDAP directory indexing attribute.

[Contents Hash Values]
The contents hash values maintain a hash of the contents of the attributes that have
been flowed in either direction between the proprietary Data Server entry and the
LDAP directory entry. If no data attributes flow between from the proprietary Data
Server, this hash value will be zero.

Data Entry Hash values

The JoinEngine maintains two hash values for each data entry it manages. The
proprietary contents hash value is a hash of the data entry’s attributes that have
flowed from the proprietary Data Server to the LDAP directory. The directory
contents hash value is a hash of the attributes that have flowed from the LDAP
directory to the proprietary Data Server.

Chapter 1 Overview

12

The purpose of the hash values is to allow the JoinEngine to quickly determine
unchanged data entries. The hash values can also be used to determine data entries
that have changed but where the data changes are not applicable. For example, if a
new proprietary data entry is detected, it is replicated to the LDAP directory and a
State database entry complete with the proprietary entry contents hash is added to
the State database. Upon subsequent synchronization cycles, after reading the
proprietary entry, the proprietary hash is recalculated. If it is the same as the hash
value in the State database, no applicable changes have occurred and no further
processing of the record is required. This technique provides optimal performance of
change detection and updates as well as minimizing the load on the entire
meta-directory system.

Purposes of the State database

The main purposes of the State database are:

■ Maintaining hash values of both proprietary and LDAP data entry contents.

■ Detection of new entries – if an entry is not present in the State database, it is
assumed to be a new entry.

■ Detection of deleted entries – The JoinEngine is responsible not only for adding
and modifying data entries to Data Servers, but also for detecting entry deletions
and propagating delete operations to the adjacent system. Many proprietary data
servers do not provide incremental updates of changes to their data entries and
instead provide the entire set of the data entries on each synchronization cycle.
Some Data Servers do not provide incremental entry delete events. The
JoinEngine detects deletes on such systems by comparing all entries in the Data
Server against the State database. Any entries in the State database not in the
Data Server are assumed to have been deleted.

Note. LDAP directories provide incremental data changes, including delete
operations, and therefore this deductive method of determining deletes is not
used for LDAP directories.

■ Detection of modified entries - by maintaining hashes of the proprietary and
directory contents, the JoinEngine can determine inapplicable entry changes and
discard these changes without further processing.

Operational Overview of JoinEngine

13

JoinEngine Multi-threading

Each JoinEngine task consists of a number of independent threads and can read and
write data concurrently. There may be some interleaving of the perl synchronization
routine sets (see later). Typically, this does not present an issue with proprietary data
servers, however, script writers need to be aware of this fact and make appropriate
provisions in their scripts.

Plug-in scripts are always implemented as independent Perl packages and therefore
operate within independent environment spaces. If two or more scripts are sharing
external resources (for example, log files), proper provisions must be made within
the scripts to support such resource sharing.

Chapter 2
Interfacing with Proprietary

Data Servers

This chapter provides a discussion of the various issues associated with interfacing
InJoin Meta-Directory with proprietary Data Servers.

Interfacing with proprietary Data Servers
When interfacing with proprietary Data Servers, careful consideration should be
given to how best to interface given the various architectural and project constraints.
Most directory systems use some form of file export mechanism and the obvious
temptation is to use these files. The advantages of interfacing using the text file
import/export mechanism is that it is workable, generally straightforward, and easily
adaptable. The disadvantages include that it is often extremely inefficient and
cumbersome. Also, functionality that may be available through direct API interfaces
may not necessarily be available through file feeds. There is an abundance of Perl
modules and packages already developed and freely available on the Internet that can
offer more efficient interface options. Time spent examining various interfacing
options will invariably result in significant long term gains. The following issues
should be carefully considered when deciding on the interface mechanism.

Project and Deployment requirements

Various factors regarding the likely deployments are:

■ Under what time constraints is the project operating?

Interfacing with proprietary Data Servers

15

■ What relative importance is attached to the Data Server in relation to the entire
project?

■ Will the completed Data Server script be used as a once off deployment or will it
be reused by both internal and external organizations in potential mass-deploy-
ment scenarios? Typically, for once-off deployments, custom scripts tailor-made
for the scenario at hand is the most sensible approach. For mass-deployment
scenarios, scripts should be more generic and more configurable.

■ What is the expected lifetime of the script? JoinEngine scripts are often devel-
oped to assist organizations migrating from one directory system to another and
the script’s usefulness will cease once the migration is complete.

■ Will the original script author be responsible for maintaining the script? If not,
as is generally the case, adequate documentation and appropriate comments
should be included with the script.

Data Propagation

Various issues regarding how and when data is to be propagated need consideration.

■ Is unidirectional or bi-directional data flow required (that is, will data entries
flow from the proprietary Data Server to the LDAP directory, flow from the
LDAP directory to the proprietary Data Server, or flow in both directions)?

■ What is the expected volume of data entries?

■ What is the expected rate of data change?

■ What is the expected data granularity level?

■ Entry level granularity implies that entire entries (and all contained
attributes) are atomic and different attributes may not flow in opposite direc-
tions.

■ Attribute-level granularity supports mastering of separate entry attributes
from either the proprietary or the LDAP directory.

For example, a proprietary e-mail address book may maintain various attributes
about all registered users including the users e-mail address, e-mail privileges and
various personal details such as job title, office and telephone number. It may be

Chapter 2 Interfacing with Proprietary Data Servers

16

appropriate for the e-mail system administrator to manage the e-mail specific
attributes within the e-mail address book and for the HR manager to manage the
users’ personal details from a HR database and flow the personal attributes to the
e-mail address book.

■ What is the expected frequency of updates and what replication time-frame is
required. For example is it sufficient to propagate all changes that occur during a
24-hour period at 12.00am, or must changes be replicated within a much
smaller time window? Many user directories do not experience many changes on
the typical daily basis, whereas directories maintaining information on inventory,
for example, may change on an hourly basis.

■ Data confidentiality, data security, and data integrity also need careful consider-
ation.

Full/Incremental Data Loads

For data entry change detection within the proprietary Data Server, the ideal solu-
tion is for the proprietary Data Server to report incremental changes. For example,
in the case of an e-mail directory containing 10,000 user entries, if the administrator
modifies 50 records on average per day and if the e-mail directory can report which
50 entries have been modified (or added or deleted), the workload on the
JoinEngine is limited to processing these 50 entries. The alternative is that a full
synchronization is performed and all 10,000 entries are processed and checked for
changes. Although the JoinEngine optimizes the delta detection to a considerable
degree by the use of the State database, it still must process the entire 10,000 entries
to some extent.

Many proprietary Data Servers now include mechanisms for change detection. If
such mechanisms exist, it is advisable to avail of them.

The performance of the script reading and writing data to the proprietary Data
Server and hosted system should be considered. Some directories may slow down
considerably after an administrator directory connection is opened.

Interfacing with proprietary Data Servers

17

Interface APIs (C/C++, file)

Many proprietary Data Servers may be accessed through vendor-supplied APIs.
Many directories also offer text file import and export options. The Perl language
may be extended by building Perl packages upon vendor-supplied C and C++ APIs
using the standard Perl XS and SWIG processes. For further information, please
refer to the Perl man pages (perlxs, perlxtut, perlcall) or relevant sections within Perl
reference books (Advanced Perl Programming, Chapter 18, is a useful starting
point).

LDAP Schema Considerations

The LDAP directory’s schema may not include object classes and attributes required
to host replicated data entries from the proprietary Data Server. If this is the case, it
may be necessary to define new object classes and new attributes within the LDAP
directory’s schema. LDAP schema modifications are generally a tedious exercise
prone to repeat iterations regardless of which LDAP directory in use. It is therefore
advisable to attempt to use common object classes and attributes if possible and
define appropriate mappings between the proprietary attributes and the LDAP
attributes. If this is not feasible, it is advisable to formally define schema extensions
even if the Data Server is only for use within an organization.

It is also typically not advisable to overload the use of standard attributes because this
can potentially create interoperability problems with other software at a later date.
For example, it is not advisable to insert an “employee_security_id” into an
inetorgperson “description” attribute.

Data Translation and Information Inference

Depending on the layout of proprietary data records it may be necessary to parse
attribute values and infer additional information from the source entry. For example,
a proprietary Data Server may host user names within a single common name
attribute. When replicating the user entry into an LDAP inetorgperson entry, as
surname is a mandatory attribute, it may be necessary to parse the common name
attribute into the name components (typically given name, initials, surname, gener-

Chapter 2 Interfacing with Proprietary Data Servers

18

ation). Also some information can be inferred from other information. For example,
a country attribute can generally be inferred from a city (for example, if city is New
York, country can be inferred to be USA).

Proprietary Data Server Entry Indexing

As already discussed in the architectural description, a fundamental requirement of
the JoinEngine is that all entries can be uniquely identified by either a single
attribute or a combination of a number of attributes.

Interfacing with proprietary Data Servers

19

Chapter 3
Data Record Definition

This chapter provides a formal definition of the Perl data record format. The related
topics discussed include multi-valued attributes, overriding the default object-class,
specifying binary attribute values, and deleting attributes.

Data Record Definition
The following is the formal language definition of a Perl data record. The definition
may seem somewhat terse but most of the terseness relates specifically to the formal
definition of rfc-822 mailboxes and is therefore not of general concern. A number of
examples are supplied at the end of this section and demonstrate various aspects of
how records should be used.

#

<record> ::= <index-field>

1*<field>

<index-field> ::= "index" "=" 1*<word>

<field> ::= /

"rfc822" "=" <mailbox>

"alias" "=" <mailbox>

"commonname" "=" <common-name>

"distinguishedname" "=" <distinguished-name>

"relativedistinguishedname" "=" <distinguished-name>

"operation" "=" "add" | "modify" | "delete"

<user-defined-param> "=" [<type>] <parameter-value>

#

<mailbox> ::= <local-part> "@" <domain>

<local-part> ::= <dot-string> | <quoted-string>

<dot-string> ::= <string> | <string> "." <dot-string>

<quoted-string> ::= """ <qtext> """

<string> ::= <char> | <char> <string>

Data Record Definition

21

<char> ::= <c> | "\" <x>

<qtext> ::= "\" <x> | "\" <x> <qtext> | <q> | <q> <qtext>

<c> ::= 0..127 less <special>, <sp>

<special> ::= "<" | ">" | "(" | ")" | "[" | "]" | "\" | ","|

";" | ":" | "@" | """ | 0..31 | 127

; same as rfc-821 except "."

<sp> ::= space character (decimal 32)

<q> ::= 0..127 less <CR>, <LF>, <"> (quote), <\> (backslash)

<x> ::= 0..127

#

<common-name> ::= 1*<word>

<distinguished-name> ::= <dn-attr> "=" <dn-value> *("," <dn-attr> "="

<dn-value>)

<dn-attr> ::= 1*<key-char>

<key-char> ::= <a-z, A-Z, 0-9, "-" and ".">

<dn-value> ::= <unquoted-dn-value> | <quoted-dn-value>

<unquoted-dn-value> ::= 1*<dn-string>

<dn-string> ::= <dn-char> | <dn-char> <dn-string>

<dn-char> ::= <cdn> | "\" <xdn>

<cdn> ::= 0..255 less """, ";"

<quoted-dn-value> ::= """ <qdntext> """

<qdntext> ::= "\" <xdn> | "\" <xdn> <qdntext> | <qdn> | <qdn> <qdntext>

<qdn> ::= 0..255 less <CR>, <LF>, <"> (quote), <\> (backslash)

<xdn> ::= 0..255

<user-defined-param> ::= 1*<word>

<parameter-value ::= <string-value> | <string-list-value> | <integer-value>

<type> ::= "[" "S" | "L" | "N" "]" ; S=String,L=String-list,N=integer

<string-value> ::= 1*(word | encoded word)

<encoded-word> ::= "=?" charset "?" encoding "?" encoded-text "?="

<charset> ::= ("win32" | "latin1" | "bin")

<encoding> ::= ("B")

<string-list-value> ::= 1#string-value

<integer-value> ::= number

<word> ::= *(<qtext>/<quoted-pair>)

<qtext> ::= < any CHAR except <">, <=> >

<quoted-pair> ::= "\" CHAR

<CHAR> ::= <any character> ; 0-255

<number> ::= *<num-char>

<num-char> ::= < '0'-'9' >

#

Chapter 3 Data Record Definition

22

Important Notes

1 <index> is the only mandatory field and must uniquely identify each record
within the proprietary system. The index field is used by the JoinEngine to track
record modifications and deletions.

2 The only value types supported are single and multi-valued strings and single
valued integer fields. Value syntaxes are interpreted from the directory schema
file. All data is expected in the local system code-page and will be encoded into
UTF8 by the JoinEngine. Likewise all directory data will be translated to the
local code-page before supplying it to the Perl script.

3 <operation> is an optional field but if specified instructs the JoinEngine on
a particular action to take. The operation is normally self-determined by the
JoinEngine.

4 <user-defined-param> may identify a configured attribute within the
attribute flow configuration table or a directory attribute field name.

5 Multi-valued attributes must be specified within a single attribute definition.

6 Unless object-class is explicitly specified, all attribute composition and structure
and naming rules must comply with the default NPLEXOrgPerson object class,
which is a structural object class derived from inetOrgPerson and organization-
alPerson. Attribute definitions and structure and naming rules must be obeyed.
The NPLEXOrgPerson object class may be extended as required provided the
schema is properly updated in the directory.

7 <distinguished-name>, if specified must be conform to RFC1779, “A
string representation of Distinguished Names”, S. Kille.

8 Field order is unimportant.

9 “relativedistinguishedname” is specified as the relative DN of the entry to view's
root DN. If both “distinguishedname” and “relativedistinguishedname” parame-
ters are set, one value will be arbitrarily selected.

10 Binary attribute value support: Binary attributes are supported over the Perl
stack by adopting text encoding techniques from MIME and in particular
RFC2047. Any attribute value containing binary data may be encoded into
either base64 or quoted-printable data. There are no length restrictions on a
value.

Data Record Definition

23

An encoded word is defined as follows:

"=?" charset "?" encoding "?" encoded-text "?="

Where:

"charset" may be either "win", "latin1" or "bin"

“encoding” must be "b" (base64 encoding) and the encoded-text must be base64
encoded according to algorithm definitions from RFC2045.

Sample Data Record

The following is a very simple record for the user “John Smith”.

@_[$count++] = “relativedistinguishedname=cn=John
Smith,ou=Marketing”;
@_[$count++] = “sn=Smith;”
@_[$count++] = “givenname=John;”

A few points to note:

■ objectclass is not specified and the default
“person,organizationalPerson,inetorgperson,NPLEXOrgPerson,NPLEXN
otesPerson,NPLEXExchangePerson” is therefore assumed.

■ The “relativedistinguishedname” value will be prepended to the
MetaView’s parent DN. For example, if this is “o=ACME,c=US”, the entry DN
will be “cn=John Smith,ou=Marketing,o=ACME,c=US”.

■ In reality, attribute values are unlikely to be hard-coded as above and it is consid-
erably more likely that values will be first loaded into Perl scalars, for example,
@_[$count++] = “sn=$surname”;

However, in the interest of simplicity, this section uses hard-coded values.

Multi-Valued Attributes

To append a multi-valued description field to this record, the following line could be
added:

Chapter 3 Data Record Definition

24

@_[$count++] = “description=[L]Mid-West Regional
Manager,Associate Vice President”;

The “[L]” indicates that there is a list of attribute values.

Note that the order of attribute values is irrelevant because LDAP directories do not
order attribute values. LDAP directories often order attribute values when returning
the result of an LDAP search – typically alphabetical or reverse-alphabetical order.

@_[$count++] = “description=[L]Associate Vice
President,Mid-West Regional Manager”;

Back-slash characters (“\”) should be used to precede naturally occurring commas in
a value. Back-slash characters naturally occurring in a value must also be preceded
with back-slash characters.

For example, to append a third value to the description attribute of “Emp-ID:
0Y113\AD, 003011”, the new description line becomes:

@_[$count++] = “description=[L]Mid-West Regional
Manager,Associate Vice President, Emp-ID: 0Y113\\AD\,
003011”;

Overriding the JoinEngine default object-class

If you wish to overwrite the default object-class, specify a multi-valued attribute, for
example,

@_[$count++] =
“objectclass=[L]person,organizationalPerson,inetorgper
son”;

Superfluous white spaces are to be avoided, as the JoinEngine will not strip them
from data record values and will instead assume that they are part of the value speci-
fication.

For example, assume the following line is specified

@_[$count++] = “objectclass=[L]person,
organizationalPerson, inetorgperson”;

Data Record Definition

25

The JoinEngine will attempt to add an LDAP entry with an object-class specifica-
tion containing the three values “ person”, “ organizationalPerson” and
“inetorgperson”. That will fail because the LDAP directory will not recognize
these values as legitimate object-classes.

Specifying binary attribute values

The Perl stack automatically truncates all attribute-value specifications at the first
ASCII ‘\0’ character. Certain ASCII control characters also will result in unex-
pected behavior and therefore it is advisable that for attributes that may hold binary
data, binary data values should be encoded.

Assume, for example, that the proprietary Data Server maintains JPEG images of all
users and it is required to load these values into an LDAP directory. The raw jpeg
image data must be encoded using the base64 encoding algorithm and supplied as
follows:

@_[$count++] = “jpegphoto==?bin?b?0E333asss..ddP3=?”;

Where “0E333asss..ddP3” is the base64 encoded data – the other characters
are delimiters as defined above.

Any attribute value may be binary encoded but it typically only makes sense when
values contain non-text characters or ASCII control characters that will not pass over
the Perl stack intact.

Also, binary and non-binary values may be mixed in a multi-valued attribute specifi-
cation

@_[$count++] =
“sn=[L]DeCharles,=?bin?b?0D487376FFHJUSCUKD..33=?”;

Deleting Attributes

To request deletion of an LDAP entry attribute, it is necessary to supply an empty
attribute. The JoinEngine will not automatically delete attributes. For example, the
following record entry requests the JoinEngine to delete the description attribute if it
exists in the LDAP entry. If no description attribute exists, the JoinEngine ignores
the request.

Chapter 3 Data Record Definition

26

@_[$count++] = “description=”;

It is therefore advisable when writing scripts to always supply all possible attributes
with each record. Supplying empty attributes will not cause any negative effects if no
attribute exists in the LDAP directory entry.

Data Record Definition

27

Chapter 4
Perl Script Function Interface

This chapter discusses various issues related to JoinEngine Perl script function inter-
faces, including package constructor and destructor, script initialization routines,
ConnectorView (CV) to MetaView (MV) synchronization routines, and directory
to CV synchronization routines.

The entries that the InJoin Meta-Directory JoinEngine manages are in either a
MetaView or a ConnectorView. The MetaView is where the unified meta-directory
is stored. A ConnectorView is where entries in external data repositories are stored.
An entry in an external data repository is viewed by the InJoin Meta-Directory
JoinEngine as being part of a ConnectorView. ConnectorViews are composed of
entries held in a directory accessible by the LDAP protocol (such as the Critical Path
InJoin Directory Server) or a database (such as Oracle, Sybase, DB2, or Microsoft
SQL Server), or other sources such as Lotus Notes, Microsoft Exchange, or other
data sources accessed by customized Perl scripts.

Overview of the Perl script function interface
Each JoinEngine script must comply with a pre-determined Perl format. There are
12 interface functions, including three script initialization functions, four functions
that are responsible for reading records from the proprietary Data Server, and five
functions that are responsible for writing data entries to the proprietary Data Server.
The purpose of each function is described below and the relevant inputs and outputs
are detailed.

Overview of the Perl script function interface

29

Note. The interface may be extended between incremental versions of the
JoinEngine. For the latest correct definition, refer in all cases to the template.pl file
that is supplied with every release. The information contained in this chapter is
more for informational and educational purposes rather than a formal reference
point.

There are four overall categories of routines:

■ Package Constructor/Destructor routines

■ Script initialization routines

■ CV to MV Synchronization routines

■ MV to CV Synchronization routines

The routines belonging to each category are explained in detail below.

JoinEngine
LDAP

Directory

sub initialize (...)

sub get_schema (...)

sub start_reading (...)
sub next_record (...)
sub read_record (...)

sub start_writing (...)
sub add_record (...)
sub modify_record (...)
sub delete_record (...)
sub finish_writing (...)

sub BEGIN (...)

sub END (...)

sub finish_reading (...)

sub uninitialize (...)

Chapter 4 Perl Script Function Interface

30

Package Constructor and Destructor
Perl supports two special subroutine definitions that act as package constructor and
destructor routines. The “BEGIN” routine is invoked when the Perl script is parsed
(that is, when the JoinEngine process is starting up). The “END” routine is invoked
when the Perl script has been successfully parsed. These routines are invoked only
once. These routines are useful for performing certain types of script operations such
as initializing data blocks, opening/closing log files, verifying Data Server connec-
tions are functioning correctly.

sub BEGIN()

Purpose: All one-time initialization should be performed in this function. There are
implicit Perl restrictions on what may be performed within this routine (for
example, other package functions may not be invoked), which must be kept in mind
when writing this routine. Please refer to the appropriate Perl reference guides for
full discussion on this routine.

sub END()

Purpose: All one-time termination should be performed in this function. Please refer
to the appropriate Perl reference guides for full discussion on this routine.

Note. END() is invoked when the script has been successfully parsed by the
JoinEngine and not when the JoinEngine is being shut down.

Script Initialization Routines

sub initialize()

Purpose: This routine accepts configuration parameters and performs other initial-
ization tasks. Script configuration parameters are supplied through this function.

Input Parameters:

@_ = * (<user-defined-param>”=”<parameter-value>)

Output Parameters: NULL

Script Initialization Routines

31

sub uninitialize()

Purpose: This routine is called when all operations have completed.

Input Parameters: NULL

Output Parameters: NULL

sub get_capabilities()

Purpose: This function informs the JoinEngine of the capabilities of the script.

Input Parameters: NULL

Output Parameters: @rec -array of script capability strings

* "E_DAReadNext" - does the script support traversing

* "E_DAReadInTraverse" - when traversing, will the entire record or just the
entry name be returned

"E_DARead" - does the script support direct indexed entry reads

* "E_DAAdd" - does the script support the addition of new entries

* "E_DAModify" - does the script support the modification of existing entries

"E_DADelete" - does the script support the deletion of existing entries

* "E_DAAssignsName" - will the script create the entry’s index or is the
JoinEngine responsible for generating the entry index via the DN mapping rules

* "E_DASchema_GeneratedByPlugIn" - is the get_schema subroutine
implemented

"E_DASupportsIncrementalRefresh" - does the script support incre-
mental refresh (that is, only return entries that have been modified) or will it return
all records on each synchronization cycle

(*) indicates default configuration

Chapter 4 Perl Script Function Interface

32

sub get_schema()

Purpose: This function retrieves the schema supported by the script, which is used
to set up attribute-mapping tables.

Input Parameters: NULL

Output Parameters: @rec -return an array of schema in the form:

<oc-spec> ::= <object-class> <attr-spec> *(<attr-spec>)
<attr-spec> ::= <attr-prefix> <attr-name>
<attr-prefix> ::= *(<attr-prefix-id>)
<attr-prefix-id> ::= (’*’ ! ’+’ | ’&’ | ’!’);

’*’ indicate not mandatory
’+’ indicate multi-valued
’&’ indicate binary
’!’ indicate no-user-modification permitted

<object-class> ::= [’*’] <oc-name>;
’*’ indicates a non-structural objectclass

<attr-name> ::= LDAPString; per RFC-2251
<oc-name> ::= LDAPString; per RFC-2251

Example: @_[0] = *sysuser sysusername !sysid *sysaddr

This example defines an non-structural object class named ‘sysuser’ with a manda-
tory attribute ‘sysusername’, a non-modifiable attribute ‘sysid’ and an optional
‘sysaddr’ attribute

CV to MV synchronization routines
These routines are responsible for retrieving information from the proprietary Data
Server. According to the configured CV to directory synchronization schedule, the
JoinEngine will periodically re-synchronize data entries from the proprietary Data
Server to the LDAP directory.

In all cases, input and output arguments are supplied through an array of strings.
Within each routine, supplied arguments may be read from the @_ array.

CV to MV synchronization routines

33

sub start_reading()

Purpose: The purpose of this routine is to perform any necessary CV initialization,
such as opening files or sockets, initializing counter variables etc. This routine is
invoked once per CV to directory synchronization cycle. If initialization fails, call
die() and the synchronization cycle will be aborted. To operate in incremental
mode (that is, propagating only deltas and no automatic deletions) return the string
"mode=incremental".

Note. A failure to call die() when initialization fails in full-synch mode may result
in the JoinEngine deleting all previously loaded entries from the LDAP view. This is
because as each next_record fails, the JoinEngine will assume the record has been
deleted.

Input Parameters: NULL or @_[0] = “Resynch=Refresh”

If a “refresh” re-synchronization has been requested, the input record will contain a
single string indicating that a refresh of all records has been requested. If the script
always operates in ‘full synch mode’ it can ignore this flag, as it will always return all
records. If the script operates in “incremental” mode, it should if capable of doing so
return all entries from the proprietary Data Server. If the script is not capable of
retrieving all records, it should call die() and thereby abort the synchronization
cycle – failure to do this will result in the JoinEngine interpreting all un-returned
entries as having been deleted.

Output Parameters: NULL or @_[0] = “mode=incremental”

If nothing is returned, the JoinEngine will assume the script is running in full
synchronization mode. If the script is operating in ‘incremental’ mode, the script
should return the string “mode=incremental”.

sub next_record()

Purpose: Called once per CV record. This routine should build the record structure
and return the record to the JoinEngine. If there are no further records, call die().
If you wish to abort a cycle during a run, for example, if an error is encountered
communicating with the CV system, return 'index=abort', in which case the
JoinEngine will abort the cycle. An additional reason code, in the form of an
'AbortReason' attribute, will be logged to the JoinEngine’s log file.

Chapter 4 Perl Script Function Interface

34

Note. Calling die() indicates to the JoinEngine that all records have been read. In
full synchronization mode, the JoinEngine will assume any records that have not
been returned have been deleted from the host system and will consequently delete
the corresponding LDAP records. If the host system becomes unavailable for what-
ever reason, return an ‘index=abort’ rather than calling die().

Input Parameters: NULL

No input parameters are supplied to the ‘next_record()’ routine.

Output Parameters: @_ entry record

The entry data record must comply with format defined in the previous section.

sub read_record()

Purpose: If the host system supports indexed entry reads, this routine is invoked by
JoinEngine to request individual data entries. If there is a communication problem
with the host system, return “index=abort”, in which case the JoinEngine will
abort the cycle. An additional reason code may be supplied in the “Abor-
tReason” attribute.

Input Parameters: @_ = “index=”<index>

Output Parameters: @rec

sub finish_reading()

Purpose: Called at end of CV to MV synchronization cycle and all files or sockets
opened during start_reading() should be closed

Input Parameters: NULL

No input parameters are supplied.

Output Parameters: NULL

No returned parameters are interpreted by the JoinEngine.

MV to CV synchronization routines

35

MV to CV synchronization routines

sub start_writing()

Purpose: Called at the start of directory to CV synchronization cycle and should
perform whatever initialization is required to accept deltas from the directory. If
initialization fails for any reason, call die() and the current synch cycle will be
aborted.

Input Parameters: NULL

No input parameters are supplied.

Output Parameters: NULL

No returned parameters are interpreted by the JoinEngine.

sub add_record()

Purpose: Adds a directory owned entry to the proprietary Data Server. This routine
takes as source a complete record and must return a locally assigned index value. The
JoinEngine uses this to create a link to the originating LDAP directory entry for the
purposes of tracking entry modifications and deletions. Specify an index value of
"discard" if the record is not required.

Input Parameters: @_=“operation=add”

"distinguishedname="<distinguishedname>

*(<user-defined-param>"="[<type>] <parameter-value>)

Output Parameters: @_[0] = "index" "=" 1*word; unique local
index string

@_[0]=”index=jsmith@cp.net”

Chapter 4 Perl Script Function Interface

36

sub modify_record()

Purpose: Modify an entry within the proprietary Data Server. The entire entry is
supplied and it is the responsibility of the supplied routine to determine what
attributes have changed if an index is returned, the State database will be updated
with the new index

Input Parameters: @_=“operation=modify"

“index=“ <index-field>

"distinguishedname="<distinguishedname>
*(<user-defined-param>"="[<type>] <parameter-value>)

Output Parameters: NULL or @_[0] = "index" "="
<index-field>; unique local index string

sub delete_record()

Purpose: Delete a directory-owned entry from the proprietary Data Server.

Input Parameters: @_="operation=modify"

“index=“ <index-field>
"distinguishedname="<distinguishedname>

Output Parameters: NULL

No returned parameters are interpreted by the JoinEngine.

finish_writing()

Purpose: Perform any user required cleanup operations following a series of write
requests

Input Parameters: NULL

No input parameters are supplied.

Output Parameters: NULL

No returned parameters are interpreted by the JoinEngine.

MV to CV synchronization routines

37

Chapter 5
Some Design Considerations

This chapter discusses various design considerations, not discussed elsewhere, that
should be considered.

Logging

The JoinEngine writes its log files into a configurable directory from where they may
be viewed remotely through the Critical Path Management Center. Filenames must
conform with MDS log filename conventions.

Scheduling

Each JoinEngine has two separate synchronization schedule specifications for
controlling both of the synchronization cycles (proprietary Data Server to directory
and directory to local proprietary Data Server).

Renaming entry index values

There are two separate index-renaming cases, based upon entry ownership, which
need consideration.

■ LDAP Directory Owned Entries:
The first case is if the entry is directory-owned, and a directory ‘modify’ opera-
tion results in the index being renamed in the proprietary Data Server. In this
case, the “modify_record()” Perl subroutine should return the new index
to the JoinEngine (for example, @_[0] = “index=<new-index>”. The
JoinEngine database is updated accordingly.

39

■ Proprietary Directory Owned Entries:
Index renames of locally owned entries are treated as entry delete and re-add
operations. If a locally owned entry has been renamed in the proprietary Data
Server, when the renamed entry is supplied to the JoinEngine (through Perl
subroutine ‘next_record()’), the JoinEngine will treat the entry as a new
entry and will delete the old entry.

Renaming entry LDAP DN values

Again there are two cases to consider when LDAP entry DNs are renamed.

■ LDAP Directory Owned Entries:
If an entry is renamed in an LDAP directory, the rename operation will be
supplied to the script. The JoinEngine will in turn process the rename operation
by updating the State database with the new DN value.

■ Proprietary Directory Owned Entries:
Locally owned entries may invoke a rename operation by supplying an alterna-
tive DN value when returning individual records from the Perl
‘next_record()’ subroutine.

Note. Index values may not be changed.

Chapter 6
Miscellaneous Issues

This chapter provides information on various topics, including a list of reference
books for learning Perl, a description of the relationship between ActiveState Tool
Corporation’s Active Perl and InJoin Meta-Directory, a discussion on LDAP schema
extensions, and a checklist for producing Perl scripts.

Further Information on Perl
The following website is useful for locating downloadable installation images of Perl
and various Perl packages.

■ http://www.activestate.com/ActivePerl/

CPAN (Comprehensive Perl Archive Network) acts as the central distribution point
for Perl. The entire Perl source code is available at this site. In addition, some binary
installable versions are also available for some platforms.

The standard Perl man pages that are supplied with the standard Perl distribution
are extensive and cover all relevant aspects of the language.

■ http://www.ora.com/

■ http://perl.oreilly.com/

For reference books on Perl, the O’Reilly Perl books are highly recommended. More
information can be retrieved from the above web locations.

For novice programmers wishing to learn about Perl either of the following books is
recommended:

ActiveState Tool Corporation’s ActivePerl and InJoin Meta-Directory

41

■ “Learning Perl”, O’Reilly, 2nd edition, 1997, Randal L. Schwartz, Tom Chris-
tiansen, and Larry Wall

■ “Learning Perl on Win32 Systems”, O’Reilly, 1997, Randal L. Schwartz, Erik
Olson, and Tom Christiansen

For more experienced programmers wishing to get to grips with the Perl language
and obtain information about the standard Perl library or particular Perl packages,
the following books are recommended:

■ “Programming Perl”, 2nd edition, O’Reilly, 1996, Larry Wall, Tom Chris-
tiansen, and Randal L. Schwartz

■ “Advanced Perl Programming”, O’Reilly, 1997, Siriam Srinivasan

■ “Perl Cookbook”, O’Reilly, 1998, Tom Christiansen and Nathan Torkington

■ “Perl for System Administration”, O’Reilly, 2000, David Bank-Endelman

ActiveState Tool Corporation’s ActivePerl and
InJoin Meta-Directory

InJoin Meta-Directory relies on a Perl script that you supply to interact with a
non-LDAP compliant data source.

The JoinEngine makes no assumptions about the format of the data source as long
as the information is accessible from a user-supplied Perl script. Given the capabili-
ties of Perl, the data source may be, for example, the NT registry or an Access data-
base, and may be manipulated through the Perl script before being passed on to the
JoinEngine.

 ActivePerl is the latest Perl binary distribution from ActiveState and replaces what
was previously distributed as Perl for Win32. The latest release of ActivePerl, as well
as other professional tools for Perl developers, are available from the ActiveState web
site at http://www.ActiveState.com.

The ActiveState Repository has a large collection of modules and extensions in
binary packages that are easy to install and use. To view and install these packages,
use the Perl Package Manager (PPM) that is included with ActivePerl.

Chapter 6 Miscellaneous Issues

42

LDAP Schema Extensions
You should avoid extending the LDAP schema unless absolutely necessary. Most
supplied LDAP schemas come with a range of object classes and attributes, which
often prove to be suitable (or at least usable) to most applications. The reasons for
avoiding modifying schema are as follows:

■ It is generally a time-consuming activity, prone to trial-and-error iterations

■ Different LDAP directories from different vendors have different methods for
modifying schemas and conflicts sometimes occur

■ The schema will need to be updated on all directory servers that may potentially
host data

■ It may be necessary to register for a proper valid Object-identifier base id to
avoid conflicts with other potential schema enhancements

In some cases, modification of the LDAP schema is unavoidable. If it is necessary to
modify the schema, please refer to the relevant LDAP directory administrator guide
for details on updating LDAP directory schemas. Also, it is advisable to define the
schema enhancements in a formal document to make it easier to maintain or
enhance the schema in the future.

Checklist
The following list provides a general guide to the typical steps required to develop
Perl scripts.

■ Understand Perl – If you have not had a lot of experience with the Perl program-
ming language, acquire the Perl reference books and familiarize yourself with the
basics of the language.

■ Examine possible interfaces to the proprietary Data Server remembering that file
interfaces are generally not the best interface mechanism. Other considerations
include:

Checklist

43

■ Full/Incremental synchronization modes – if incremental mode is possible, it
should be used

■ Attribute Flow granularity requirements

■ Index attribute – what attribute (or combination of attributes) uniquely and
consistently identifies entries in host directories

■ Potential system unavailability/downtimes – does the script need to cater for
such eventualities. It may be advisable for the script to generate warning
messages for the administrator?

■ Schema definition – if new object classes and attribute definitions are
required, properly define the extensions and update the LDAP directory’s
schema

■ Select appropriate distinguished name mapping algorithm and LDAP directory
layout.

■ Write the script.

■ Test the script in various likely deployment scenarios. Using separate
custom-written Perl test scripts is often the best approach to testing basic func-
tionality. End-to-end testing should also cover all basic functionality and
volume/stress loads.

Also when testing the script, test basic functionality with small data loads as
problems are typically just as likely to occur in the first 100 record sample as in a
50,000 record sample.

■ Carefully decide the script configuration parameters and fully document all
possible options.

■ Document the script completely and identify and explain key design decisions
and any assumptions made when writing the script.

The ActiveState Repository has a large collection of modules and extensions in
binary packages that are easy to install and use. To view and install these packages,
use the Perl Package Manager (PPM) which is included with ActivePerl.

Appendix A
Operations for the Proprietary

Data Servers

This chapter contains three sections on:

■ SAP and PeopleSoft integration, in which Perl scripts are generated to provide
connectivity between InJoin Meta-Directory and SAP or PeopleSoft.

■ Perl scripts, which the JoinEngine uses to interact with external data sources.

Interacting with the Perl script
A Perl script template (Template.pl) that describes how to create a Perl script to suit
your needs is installed to the following location:

C:\Program Files\CriticalPath\Manager\scripts\Univer-
salParser

Note. This template can also serve as a Universal Parsing script when used in
conjunction with a configuration file and a data file. For detailed information
about the Universal Parsing Script, please see “Configuring the Universal Parsing
Script,” which is located at
C:\Program Files\CriticalPath\Manager\scripts\UniversalParser\univconn.doc.

	InJoin TM Meta-Directory TM Connecting Proprietary Data Servers using the JoinEngine Perl Plug-In Guide
	Contents

	Overview
	Working with proprietary Data Servers
	Architectural Overview of the JoinEngine Perl Plug-In
	Operational Overview of JoinEngine
	Data Entries
	State Databases
	JoinEngine Multi-threading

	Interfacing with Proprietary Data Servers
	Interfacing with proprietary Data Servers
	Project and Deployment requirements
	Data Propagation
	Interface APIs (C/C++, file)
	LDAP Schema Considerations
	Data Translation and Information Inference
	Proprietary Data Server Entry Indexing

	Data Record Definition
	Data Record Definition
	Important Notes
	Sample Data Record
	Multi-Valued Attributes
	Overriding the JoinEngine default object-class
	Specifying binary attribute values

	Perl Script Function Interface
	Overview of the Perl script function interface
	Package Constructor and Destructor
	Script Initialization Routines

	CV to MV synchronization routines
	MV to CV synchronization routines

	Some Design Considerations
	Logging
	Scheduling
	Renaming entry index values
	Renaming entry LDAP DN values

	Miscellaneous Issues
	Further Information on Perl
	ActiveState Tool Corporation’s ActivePerl and InJoin Meta-Directory
	LDAP Schema Extensions
	Checklist

	Operations for the Proprietary Data Servers
	Interacting with the Perl script

	Online Manuals Main Menu

